Stability of N₂O⁻ in Cyclohexane

By F. S. DAINTON, P. O'NEILL, and G. A. SALMON*

(University of Leeds, Cookridge High Energy Radiation Research Centre, Cookridge Hospital, Leeds LS16 6QB)

Summary Pulse-radiolysis studies show that N_2O^- formed in cyclohexane solution can transfer an electron rapidly to galvinoxyl (GAL), a property shared by the anions of O_2 , SF_6 , CO_2 , and CH_3NO_2 but not by those of I_2 , CCl_4 , and $C_2(CN)_4$; N_2O^- is estimated to have a lifetime in cyclohexane not less than $20\,\mu s$.

NITROUS OXIDE is a powerful electron scavenger. Mass-spectrometric studies show that the appearance potential of the O⁻ ion is too small to be measured¹ and hence ΔE^0 for the dissociative electron capture process is $\simeq 0$. However, the experiments of Holtslander and Freeman² suggest that N_2O^- can have a lifetime of 10^{-4} to 10^{-3} s in the gas phase and the question arises as to whether N_2O^- can persist in liquids sufficiently long to be of chemical significance. In protic media the evidence³ suggests that, if it is formed, N_2O^- rapidly decomposes to form N_2 and the oxidising species O⁻ but in cyclohexane the dependence of $G(N_2)$ on $[N_2O]$ in γ -irradiated solution of N_2O has been interpreted by Warman et al.⁴ as indicating that N_2O^- formed in reaction (1) can persist to react with another molecule of N_2O according to equation (2).

$$N_2O + e^- \longrightarrow N_2O^-$$
 (1)

$$N_2O^- + N_2O \longrightarrow N_2 + N_2O_2^-$$
 (2)

In addition, Mishra and Symons⁵ have recently presented e.s.r. spectroscopic evidence which suggests that N_2O^- is stable at 77 K in a carbon disulphide matrix.

It appears that if N_2O^- exists, its absorption spectrum does not permit its detection by existing pulse-radiolysis techniques. However, by using a second solute that has a higher electron affinity than N_2O and forms an anion with a characteristic intense absorption spectrum it should be possible to detect formation of the anion by electron transfer from N_2O^- . Capellos and Allen⁶ have shown that the stable free-radical galvinoxyl (GAL) is also a powerful electron scavenger, forming the anion, GAL⁻, with a strong optical absorption (λ_{max} 580 nm) which can be used to measure the yield of free electrons and we now report data which show that GAL can rapidly extract an electron from N_2O^- .

Solutions of GAL in cyclohexane either deaerated by several freeze-pump-thaw cycles, great care being taken to remove any carbon dioxide, or saturated with N_2O , SF₆, O_2 , or CO_2 , were irradiated with 25, 200, or 600 ns pulses of 3 MeV electrons and the formation of GAL⁻, which was identified by its absorption spectrum, 6 was followed at 580 nm using methods already described.

For carefully deaerated 5×10^{-5} M-solutions of GAL in cyclohexane at a dose per pulse <300 rad [GAL⁻] increased in a pseudo-first-order manner over about three half-lives with $t_{\frac{1}{2}}=2\,\mu\mathrm{s}$, indicating the occurrence of reaction (3) in which the electrons are uniformly distributed in space and

$$e^- + GAL \longrightarrow GAL^-$$
 (3)

 $k_3 \simeq 7 \times 10^9 {\rm M}^{-1} {\rm s}^{-1}$. At high doses per pulse some electrons react with positive ions formed in the primary

act and the growth of [GAL⁻] deviates from the first-order law.

Iodine is known to be an efficient electron scavenger in cyclohexane and the observation that 10^{-3}M-I_2 completely prevented the formation of GAL⁻ was expected. A similar effect was observed in solutions containing the electron scavengers $\text{CCl}_4(10^{-1}\text{M})$ and $\text{C}_2(\text{CN})_4$ (10^{-3}M). In marked contrast the maximum yield of GAL⁻ from 10^{-5} to 10^{-4}M -solutions of GAL was unaffected by the presence of $N_2\text{O}$ even when $[N_2\text{O}] = 10^4$ [GAL] i.e. when virtually all the electrons are expected to be scavenged by $N_2\text{O}$. These observations clearly prove (a) that reaction (4) is occurring and (b) that the electron affinity of GAL is less than those of I_2 ($1\cdot6$ — $2\cdot4$ eV), CCl₄($2\cdot12$ eV), and I_2 and I_3 and I_4 greater than that of I_4 (I_4 eV). From the

$$N_2O^- + GAL \longrightarrow N_2O + GAL^-$$
 (4)

first-order growth (see Figure) of [GAL⁻] in N₂O saturated solutions subjected to doses less than 500 rad we calculate

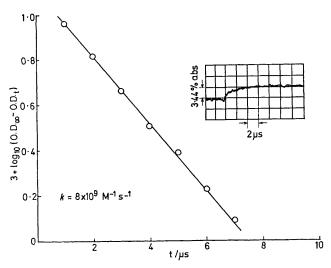


FIGURE. Growth of GAL⁻ in N₂O-saturated cyclohexane solution. [GAL] = 5×10^{-5} M, $\lambda = 580$ nm, pulse length = 0.2 μ s, dose $\simeq 300$ rads.

 $k_4 = (1.0 \pm 0.2) \times 10^{10} \rm M^{-1} s^{-1}$ and since for solutions containing $10^{-5} \rm M\text{-}GAL$ this growth continues for more than $20 \, \mu s$, $N_2 \rm O^-$ must be stable for at least this period in cyclohexane.

At doses > 500 rad/pulse the growth of [GAL-] deviates from first-order in a manner attributed to the concurrent reaction (5) where CH+ is a cyclohexane cation and P

$$N_2O^- + CH^+ \longrightarrow N_2 + P$$
 (5)

denotes oxidation products of cyclohexane. k_5 was estimated to be $(2\cdot3\pm0\cdot8)\times10^{12}\mathrm{M^{-1}s^{-1}}$ by observing the growth of [GAL-] in solutions containing $10^{-5}\mathrm{M}<[\mathrm{GAL}]<10^{-4}\mathrm{M}$ subjected to doses/pulse up to 4 k rad. The data were treated by the method of least-square refinements

with numerical integration of the rate equations and making corrections for the decay of GAL- in reaction (6).

$$GAL^- + CH^+ \rightarrow Product$$
 (6)

From the decay of GAL- after its formation in reaction (4) had become negligible, k_6 was found to be (6.5 ± 0.5) $\times 10^{11} M^{-1} s^{-1}$.

Data obtained for solutions of GAL containing other solutes show that GAL can abstract electrons from O_2 , SF₆, and CO₂ ($k \simeq 2 \times 10^{10} \rm M^{-1} s^{-1}$) and CH₃NO₂ ($k \simeq 8$ \times $10^9 M^{-1} s^{-1}).$ The reported values of the electron affinities of O2, SF6, and CO2 are (0.43 \pm 0.02),8 (1.49 \pm 0.21)8 and ca. 3.8 eV,8 respectively. The fact that CO₂ can transfer its charge to GAL whereas I2, CCl4, and C2(CN)4 cannot suggests that the reported value of the electron affinity of CO₂ is much too large.

We thank the Science Research Council and the American Chemical Society Petroleum Research Fund for financial support.

(Received, 7th June 1972; Com. 976.)

¹ G. J. Schultz, J. Chem. Phys., 1961, 34, 1778.

² W. J. Holtslander and G. R. Freeman, Canad. J. Chem., 1967, 45, 1661.

³ See, for example, G. V. Buxton, *Trans. Faraday Soc.*, 1970, 66, 1656, where aqueous systems are discussed. ⁴ J. M. Warman, K.-D. Asmus, and R. H. Schuler, "Radiation Chemistry," Vol. II, p. 25, A.C.S. Adv. Chem. Series, vol. 82, ed. E. J. Hart, 1968.

⁶ S. P. Mishra and M. C. R. Symons, J.C.S. Chem. Comm., 1972, 510.

⁶ C. Capellos and A. O. Allen, *J. Phys. Chem.*, 1970, 74, 840.
⁷ T. J. Kemp, J. P. Roberts, G. A. Salmon, and G. F. Thompson, *J. Phys. Chem.*, 1968, 72, 1464.
⁸ R. P. Blaunstein and L. G. Christophorou, *Radiation Res. Rev.*, 1971, 3, 69.